Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2323153, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38442029

RESUMO

The emergence of Anaplasma bovis or A. bovis-like infection in humans from China and the United States of America has raised concern about the public health importance of this pathogen. Although A. bovis has been detected in a wide range of ticks and mammals in the world, no genome of the pathogen is available up to now, which has prohibited us from better understanding the genetic basis for its pathogenicity. Here we describe an A. bovis genome from metagenomic sequencing of an infected goat in China. Anaplasma bovis had the smallest genome of the genus Anaplasma, and relatively lower GC content. Phylogenetic analysis of single-copy orthologue sequence showed that A. bovis was closely related to A. platys and A. phagocytophilum, but relatively far from intraerythrocytic Anaplasma species. Anaplasma bovis had 116 unique orthogroups and lacked 51 orthogroups in comparison to other Anaplasma species. The virulence factors of A. bovis were significantly less than those of A. phagocytophilum, suggesting less pathogenicity of A. bovis. When tested by specific PCR assays, A. bovis was detected in 23 of 29 goats, with an infection rate up to 79.3% (95% CI: 64.6% ∼94.1%). The phylogenetic analyses based on partial 16S rRNA, gltA and groEL genes indicated that A. bovis had high genetic diversity. The findings of this study lay a foundation for further understanding of the biological characteristics and genetic diversity of A. bovis, and will facilitate the formulation of prevention and control strategies.


Assuntos
Anaplasma , Genômica , Humanos , Animais , Filogenia , RNA Ribossômico 16S/genética , Anaplasma/genética , China/epidemiologia , Cabras , Variação Genética
2.
Sci China Life Sci ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38478297

RESUMO

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.

3.
Parasit Vectors ; 17(1): 92, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414058

RESUMO

BACKGROUND: Haemaphysalis concinna, carrying multiple pathogens, has attracted increasing attention because of its expanded geographical range and significant role in disease transmission. This study aimed to identify the potential public health risks posed by H. concinna and H. concinna-associated pathogens. METHODS: A comprehensive database integrating a field survey, literature review, reference book, and relevant websites was developed. The geographical distribution of H. concinna and its associated pathogens was illustrated using ArcGIS. Meta-analysis was performed to estimate the prevalence of H. concinna-associated microbes. Phylogenetic and geographical methods were used to investigate the role of birds in the transmission of H. concinna-associated microbes. The potential global distribution of H. concinna was predicted by ecological niche modeling. RESULTS: Haemaphysalis concinna was distributed in 34 countries across the Eurasian continent, predominantly in China, Russia, and Central Europe. The tick species carried at least 40 human pathogens, including six species in the Anaplasmataceae family, five species of Babesia, four genospecies in the complex Borrelia burgdorferi sensu lato, ten species of spotted fever group rickettsiae, ten species of viruses, as well as Francisella, Coxiella, and other bacteria. Haemaphysalis concinna could parasitize 119 host species, with nearly half of them being birds, which played a crucial role in the long-distance transmission of tick-borne microbes. Our predictive modeling suggested that H. concinna could potentially survive in regions where the tick has never been previously recorded such as central North America, southern South America, southeast Oceania, and southern Africa. CONCLUSIONS: Our study revealed the wide distribution, broad host range, and pathogen diversity of H. concinna. Authorities, healthcare professionals, and the entire community should address the growing threat of H. concinna and associated pathogens. Tick monitoring and control, pathogen identification, diagnostic tools, and continuous research should be enhanced.


Assuntos
Babesia , Ixodes , Carrapatos , Animais , Europa (Continente) , Ixodidae/microbiologia , Filogenia , Carrapatos/microbiologia
4.
Nat Commun ; 15(1): 1048, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316817

RESUMO

We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.


Assuntos
Infecções por Coronavirus , Coronavirus , Pangolins , Animais , Feminino , Humanos , Camundongos , China , Quirópteros , Citocinas , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Camundongos Transgênicos , Pangolins/virologia
5.
Microbiome ; 12(1): 35, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378577

RESUMO

BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.


Assuntos
Ixodidae , Phlebovirus , Carrapatos , Animais , Humanos , Ixodidae/genética , 60614 , Viroma/genética , Filogenia , Phlebovirus/genética
6.
Malar J ; 23(1): 30, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243247

RESUMO

BACKGROUND: Malaria remains a significant public health concern in Niger, with the number of cases increasing from 592,334 in 2000 to 3,138,696 in 2010. In response, a concerted campaign against the disease has been initiated. However, the implementation of these malaria interventions and their association with epidemiological behaviour remains unclear. METHODS: A time-series study was conducted in Niger from 2010 to 2019. Multiple data sources concerning malaria were integrated, encompassing national surveillance data, Statistic Yearbook, targeted malaria control interventions, and meteorological data. Incidence rate, mortality rate, and case fatality ratio (CFR) by different regions and age groups were analysed. Joinpoint regression models were used to estimate annual changes in malaria. The changes in coverage of malaria interventions were evaluated. RESULTS: Between 2010 to 2019, the incidence rate of malaria decreased from 249.43 to 187.00 cases per 1,000 population in Niger. Niamey had a high annual mean incidence rate and the lowest CFR, while Agadez was on the contrary. Joinpoint regression analysis revealed a declining trend in malaria incidence for all age groups except the 10-24 years group, and the mortality rate and the CFR initially decreased followed by an increase in all age groups. Niger has implemented a series of malaria interventions, with the major ones being scaled up to larger populations during the study period. CONCLUSIONS: The scale-up of multi-interventions in Niger has significantly reduced malaria incidence, but the rise in mortality rate and CFR addresses the challenges in malaria control and elimination. Malaria endemic countries should enhance surveillance of malaria cases and drug resistance in Plasmodium, improve diagnosis and treatment, expand the population coverage of insecticide-treated bed nets and seasonal malaria chemoprevention, and strengthen the management of severe malaria cases.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Níger/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Projetos de Pesquisa , Incidência
7.
Nat Commun ; 14(1): 6786, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880290

RESUMO

There has been increasing global concern about the spillover transmission of pangolin-associated microbes. To assess the risk of these microbes for emergence as human pathogens, we integrated data from multiple sources to describe the distribution and spectrum of microbes harbored by pangolins. Wild and trafficked pangolins have been mainly recorded in Asia and Africa, while captive pangolins have been reported in European and North American countries. A total of 128 microbes, including 92 viruses, 25 bacteria, eight protists, and three uncharacterized microbes, have been identified in five pangolin species. Out of 128 pangolin-associated microbes, 31 (including 13 viruses, 15 bacteria, and three protists) have been reported in humans, and 54 are animal-associated viruses. The phylogenetic analysis of human-associated viruses carried by pangolins reveals that they are genetically close to those naturally circulating among human populations in the world. Pangolins harbor diverse microbes, many of which have been previously reported in humans and animals. Abundant viruses initially detected in pangolins might exhibit risks for spillover transmission.


Assuntos
Pangolins , Animais , Humanos , Filogenia , Ásia , África , América do Norte
8.
Infect Genet Evol ; 115: 105510, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778674

RESUMO

Anaplasma capra, an emerging tick-borne pathogen, has caused a lot of concern since initially recognized in goats and patients in China in 2015, and has been reported in a wide range of domestic and wild animals as well as ticks worldwide, posing a threat to public health. In this systematic review, we established a comprehensive database to acquire the distribution and prevalence status of this pathogen, and collected all sequences of A. capra to summarize the details of genetic diversity by phylogenetic analysis. We also predicted the possible global distribution of A. capra by using ecological niche model. A. capra has been known to distribute in 18 countries across Asia, Europe and Africa. A total of 19 species of mammals from seven families have been reported as hosts, and domestic ruminants including goats, sheep and cattle were the major hosts. At least 8 tick species of 4 genera have been reported to carry A. capra, and Haemaphysalis longicornis was most commonly infected. Sheep and Rhipicephalus microplus had the highest positive rates among animals and ticks. Phylogenetic analysis based on gltA and groEL genes revealed that A. capra could primarily be divided into two clusters related to geographic location and animal hosts. The predictive model showed that the most suitable habitats for presence of A. capra were mainly located in Asia and eastern Europe. These cumulative data regarding A. capra of our study lay a foundation for the subsequent exploration of this emerging tick-borne pathogen.


Assuntos
Anaplasmose , Rhipicephalus , Humanos , Animais , Bovinos , Ovinos , Anaplasmose/epidemiologia , Filogenia , Anaplasma/genética , Ruminantes , Cabras
9.
Emerg Infect Dis ; 29(9): 1780-1788, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610104

RESUMO

Anaplasma capra is an emerging tickborne human pathogen initially recognized in China in 2015; it has been reported in ticks and in a wide range of domestic and wild animals worldwide. We describe whole-genome sequences of 2 A. capra strains from metagenomic sequencing of purified erythrocytes from infected goats in China. The genome of A. capra was the smallest among members of the genus Anaplasma. The genomes of the 2 A. capra strains contained comparable G+C content and numbers of pseudogenes with intraerythrocytic Anaplasma species. The 2 A. capra strains had 54 unique genes. The prevalence of A. capra was high among goats in the 2 endemic areas. Phylogenetic analyses revealed that the A. capra strains detected in this study were basically classified into 2 subclusters with those previously detected in Asia. Our findings clarify details of the genomic characteristics of A. capra and shed light on its genetic diversity.


Assuntos
Genômica , Cabras , Animais , Humanos , Prevalência , Filogenia , Anaplasma/genética , China/epidemiologia
11.
Microbiol Spectr ; 11(4): e0030123, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37260375

RESUMO

Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.


Assuntos
Theileria , Theileriose , Animais , Bovinos , Theileria/genética , Filogenia , Cabras , Genômica
12.
J Med Virol ; 95(6): e28861, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310144

RESUMO

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Humanos , Estações do Ano , Betacoronavirus , China , Coronavirus Humano OC43/genética
13.
Nat Microbiol ; 8(1): 162-173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604510

RESUMO

The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.


Assuntos
Vírus de RNA , Carrapatos , Vírus , Animais , Vírus de RNA/genética , Genoma Viral/genética , RNA
14.
Microbiol Spectr ; 10(5): e0232322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173317

RESUMO

Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses. There is an ongoing debate as to whether established infections by one Rickettsia species preclude the maintenance of the second species in ticks. Here, we identified two Rickettsia species in inoculum from Haemaphysalis montgomeryi ticks and subsequently obtained pure isolates of each species by plaque selection. The two isolates were classified as a transitional group and spotted fever group rickettsiae and named Rickettsia hoogstraalii str CS and Rickettsia rhipicephalii str EH, respectively. The coinfection of these two Rickettsia species was detected in 25.6% of individual field-collected H. montgomeryi. In cell culture infection models, R. hoogstraalii str CS overwhelmed R. rhipicephalii str EH with more obvious cytopathic effects, faster plaque formation, and increased cellular growth when cocultured, and R. hoogstraalii str CS seemed to polymerize actin tails differently from R. rhipicephalii str EH in vitro. This work provides a model to investigate the mechanisms of both Rickettsia-Rickettsia and Rickettsia-vector interactions. IMPORTANCE The rickettsiae are a group of obligate intracellular Gram-negative bacteria that include human pathogens causing an array of clinical symptoms and even death. There is an important question in the field, that is whether one infection can block the superinfection of other rickettsiae. This work demonstrated the coinfection of two Rickettsia species in individual ticks and further highlighted that testing the rickettsial competitive exclusion hypothesis will undoubtedly be a promising area as methods for bioengineering and pathogen biocontrol become amenable for rickettsiae.


Assuntos
Coinfecção , Ixodidae , Rickettsia , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Actinas , Rickettsia/genética , Ixodidae/microbiologia
15.
Nat Microbiol ; 7(8): 1259-1269, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918420

RESUMO

Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the L-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, Rotavirus A and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Mamíferos , Pangolins , SARS-CoV-2/genética
16.
Curr Biol ; 32(7): R307-R308, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413253

RESUMO

Respiratory syncytial virus (RSV) is an enveloped non-segmented negative sense RNA virus that belongs to Orthopneumovirus genus of the Pneumoviridae family in the order Mononegavirales. The virus is the leading cause of severe respiratory disease in children under two years of age and is responsible for substantial disease burden in infants and elder people in both developed and developing countries1,2. RSV is only known to circulate among humans, though it was first isolated from chimpanzees3. The virus can experimentally infect mice, rats, cotton rats, ferrets, and hamsters, but does not naturally circulate in these animal populations4. We found that Malayan pangolins (Manis javanica) were naturally infected with RSVs that have 99.4-99.8% genomic identity with strains circulating in humans. Phylogenetic analyses revealed that five RSVs in pangolins were RSV-A ON1 and seven were RSV-B BA genotypes, both of which are currently prevalent in humans worldwide. These findings suggest that humans might transmit their viruses to endangered wildlife.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , Animais , Furões , Genótipo , Humanos , Lactente , Camundongos , Pangolins , Filogenia , Infecções por Vírus Respiratório Sincicial/veterinária , Vírus Sincicial Respiratório Humano/genética
17.
BMC Infect Dis ; 22(1): 332, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379167

RESUMO

BACKGROUND: The current surveillance system only focuses on notifiable infectious diseases in China. The arrival of the big-data era provides us a chance to elaborate on the full spectrum of infectious diseases. METHODS: In this population-based observational study, we used multiple health-related data extracted from the Shandong Multi-Center Healthcare Big Data Platform from January 2013 to June 2017 to estimate the incidence density and describe the epidemiological characteristics and dynamics of various infectious diseases in a population of 3,987,573 individuals in Shandong province, China. RESULTS: In total, 106,289 cases of 130 infectious diseases were diagnosed among the population, with an incidence density (ID) of 694.86 per 100,000 person-years. Besides 73,801 cases of 35 notifiable infectious diseases, 32,488 cases of 95 non-notifiable infectious diseases were identified. The overall ID continuously increased from 364.81 per 100,000 person-years in 2013 to 1071.80 per 100,000 person-years in 2017 (χ2 test for trend, P < 0.0001). Urban areas had a significantly higher ID than rural areas, with a relative risk of 1.25 (95% CI 1.23-1.27). Adolescents aged 10-19 years had the highest ID of varicella, women aged 20-39 years had significantly higher IDs of syphilis and trichomoniasis, and people aged ≥ 60 years had significantly higher IDs of zoster and viral conjunctivitis (all P < 0.05). CONCLUSIONS: Infectious diseases remain a substantial public health problem, and non-notifiable diseases should not be neglected. Multi-source-based big data are beneficial to better understand the profile and dynamics of infectious diseases.


Assuntos
Doenças Transmissíveis , Sífilis , Adolescente , Adulto , Big Data , Criança , China/epidemiologia , Doenças Transmissíveis/epidemiologia , Feminino , Humanos , Incidência , Pessoa de Meia-Idade , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-33673163

RESUMO

Western countries are experiencing surges in COVID-19 cases and deaths due to increasing public transportation during holiday seasons. This study aimed to explore whether mainland China will face an epidemic rebound during the Spring Festival holiday, when millions of Chinese people travel across the country, and investigate which nucleic acid testing (NAT) strategy is optimal to contain the epidemic. A microsimulation model was used to simulate SARS-CoV-2 transmission among railway travelers and evaluated the effects of various NAT strategies. An extended susceptible-exposed-infectious-recovered (SEIR) model was built to forecast local transmission during the Spring Festival period under different scenarios of testing strategies. The total number of infections, testing burden, and medical expenditure were calculated to devise an optimal strategy during the Spring Festival travel rush. Assuming the daily incidence of 20 per 10 million persons, our model simulated that there would be 97 active infections on the day of travel among 10 million railway passengers without NAT and symptom screening. Pre-travel testing could reduce the number of active infections. Compared with no NAT, testing passengers from risk tier 2-4 regions 3 days before travelling could significantly reduce the risk of transmission, and it is more economical and efficient than testing for all passengers.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Férias e Feriados , Viagem , COVID-19/transmissão , China/epidemiologia , Simulação por Computador , Humanos , Estações do Ano
20.
J Med Entomol ; 58(3): 1363-1369, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33399212

RESUMO

Spotted fever group rickettsiae, mainly maintained and transmitted by ticks, are important etiological agents of (re)emerging zoonotic diseases worldwide. It is of great significance to investigate spotted fever group rickettsiae in ticks in different areas for the prevention and control of rickettsioses. In this study, a total of 305 ticks were collected from wild and domestic animals in Chongqing, Guizhou, Yunnan, and Guangxi provinces of southwestern China during 2017-2019 and examined for the presence of spotted fever group rickettsiae by PCR with primers targeting the partial gltA, ompA, rrs, and htrA genes. Results showed that two spotted fever group rickettsiae species, including the pathogenic Candidatus Rickettsia jingxinensis (Rickettsiales: Rickettsiaceae) and a potential novel species Rickettsia sp. sw (Rickettsiales: Rickettsiaceae), were identified. The Ca. R. jingxinensis sequences were recovered from Rhipicephalus microplus (Ixodida: Ixodidae) and Haemaphysalis longicornis (Ixodida: Ixodidae) ticks and phylogenetically clustered with previous Ca. R. jingxinensis, Ca. R. longicornii (Rickettsiales: Rickettsiaceae), and Rickettsia sp. XY118 (Rickettsiales: Rickettsiaceae) strains. Rickettsia sp. sw was detected in Amblyomma geoemydae (Ixodida: Ixodidae) and Rh. microplus. Interestingly, as far as we know, this was the first report of Rickettsia (Rickettsiales: Rickettsiaceae) in A. geoemydae. Phylogenetic analyses indicated that this potential novel species was closely related to R. aeschlimannii (Rickettsiales: Rickettsiaceae) with gltA and ompA genes and grouped in a cluster composed of R. montanensis (Rickettsiales: Rickettsiaceae), R. raoultii (Rickettsiales: Rickettsiaceae), R. aeschlimannii, R. massiliae (Rickettsiales: Rickettsiaceae), and R. rhipicephali (Rickettsiales: Rickettsiaceae) with htrA, while formed a separate clade with rrs. The pathogenicity of Rickettsia sp. sw should be further confirmed. These results expand the knowledge of the geographical distribution and vector distribution of spotted fever group rickettsiae in China and are useful for assessing the potential public health risk.


Assuntos
Ixodidae/microbiologia , Rickettsia/isolamento & purificação , Animais , Animais Domésticos/parasitologia , Animais Selvagens/parasitologia , China , Feminino , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Rhipicephalus/microbiologia , Rickettsiose do Grupo da Febre Maculosa/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...